Genetic interactions suggest multiple distinct roles of the arch and core helicase domains of Mtr4 in Rrp6 and exosome function

نویسندگان

  • A. Alejandra Klauer
  • Ambro van Hoof
چکیده

The RNA exosome is responsible for a wide variety of RNA processing and degradation reactions. The activity and specificity of the RNA exosome is thought to be controlled by a number of cofactors. Mtr4 is an essential RNA-dependent adenosine triphosphatase that is required for all of the nuclear functions of the RNA exosome. The crystal structure of Mtr4 uncovered a domain that is conserved in the RNA exosome cofactors Mtr4 and Ski2 but not in other helicases, suggesting it has an important role related to exosome activation. Rrp6 provides the nuclear exosome with one of its three nuclease activities, and previous findings suggested that the arch domain is specifically required for Rrp6 functions. Here, we report that the genetic interactions between the arch domain of Mtr4 and Rrp6 cannot be explained by the arch domain solely acting in Rrp6-dependent processing reactions. Specifically, we show that the arch domain is not required for all Rrp6 functions, and that the arch domain also functions independently of Rrp6. Finally, we show that the arch domain of Ski2, the cytoplasmic counterpart of Mtr4, is required for Ski2's function, thereby confirming that the arch domains of these cofactors function independently of Rrp6.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase

Nuclear RNA exosomes catalyze a range of RNA processing and decay activities that are coordinated in part by cofactors, including Mpp6, Rrp47, and the Mtr4 RNA helicase. Mpp6 interacts with the nine-subunit exosome core, while Rrp47 stabilizes the exoribonuclease Rrp6 and recruits Mtr4, but it is less clear if these cofactors work together. Using biochemistry with Saccharomyces cerevisiae prote...

متن کامل

The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase.

The exosome is a conserved multi-subunit ribonuclease complex that functions in 3' end processing, turnover and surveillance of nuclear and cytoplasmic RNAs. In the yeast nucleus, the 10-subunit core complex of the exosome (Exo-10) physically and functionally interacts with the Rrp6 exoribonuclease and its associated cofactor Rrp47, the helicase Mtr4 and Mpp6. Here, we show that binding of Mtr4...

متن کامل

Structural insights into the interaction of the nuclear exosome helicase Mtr4 with the preribosomal protein Nop53.

The nuclear exosome and the associated RNA helicase Mtr4 participate in the processing of several ribonucleoprotein particles (RNP), including the maturation of the large ribosomal subunit (60S). S. cerevisiae Mtr4 interacts directly with Nop53, a ribosomal biogenesis factor present in late pre-60S particles containing precursors of the 5.8S rRNA. The Mtr4-Nop53 interaction plays a pivotal role...

متن کامل

Mutations in Mtr4 Structural Domains Reveal Their Important Role in Regulating tRNAiMet Turnover in Saccharomyces cerevisiae and Mtr4p Enzymatic Activities In Vitro

RNA processing and turnover play important roles in the maturation, metabolism and quality control of a large variety of RNAs thereby contributing to gene expression and cellular health. The TRAMP complex, composed of Air2p, Trf4p and Mtr4p, stimulates nuclear exosome-dependent RNA processing and degradation in Saccharomyces cerevisiae. The Mtr4 protein structure is composed of a helicase core ...

متن کامل

The Mtr4 ratchet helix and arch domain both function to promote RNA unwinding

Mtr4 is a conserved Ski2-like RNA helicase and a subunit of the TRAMP complex that activates exosome-mediated 3'-5' turnover in nuclear RNA surveillance and processing pathways. Prominent features of the Mtr4 structure include a four-domain ring-like helicase core and a large arch domain that spans the core. The 'ratchet helix' is positioned to interact with RNA substrates as they move through ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013